核定位蛋白1(Nulp1)在治療心肌肥厚中的功能及應(yīng)用
【專利說明】核定位蛋白1 (Nulpl)在治療心肌肥厚中的功能及應(yīng)用
[0001]
技術(shù)領(lǐng)域
[0002] 本發(fā)明屬于基因的功能與應(yīng)用領(lǐng)域,特別設(shè)及一種核定位蛋白1 (Nulpl)在治療 屯、肌肥厚中的功能及應(yīng)用。
【背景技術(shù)】
[0003] 屯、肌肥厚是屯、肌對(duì)長(zhǎng)期生物力學(xué)壓力或容積負(fù)荷增加的代償性反應(yīng),常見于高血 壓、主動(dòng)脈瓣狹窄等屯、血管疾病,其主要表現(xiàn)為屯、肌細(xì)胞體積增大、蛋白合成增多、細(xì)胞外 基質(zhì)增多等特征[1-3]。高血壓、老年退行性主動(dòng)脈瓣疾病在我國(guó)呈逐年上升趨勢(shì)。由高血 壓等疾病所致的屯、肌肥厚、高血壓屯、臟病發(fā)病率也隨之增加。盡管屯、肌肥厚最初可W使屯、 肌細(xì)胞增大,屯、肌收縮力加強(qiáng),是一種維持正常屯、輸出量的代償機(jī)制,但長(zhǎng)期持續(xù)性的壓力 或容積負(fù)荷過重則會(huì)引起屯、肌重構(gòu),同時(shí)由于屯、肌需氧量增大,而冠狀動(dòng)脈血供相對(duì)不足, 弓植屯、肌缺血、屯、肌細(xì)胞調(diào)亡,進(jìn)而導(dǎo)致失代償,從而引起屯、力衰竭、惡性屯、律失常、甚至巧 死等[4, 5]。研究表明隨著屯、臟左室肥厚的發(fā)生發(fā)展,屯、肌缺血、室性屯、律失常、屯、力衰竭、 巧死等屯、血管事件的發(fā)生率增加了 6~10倍[6]。
[0004]目前認(rèn)為屯、肌肥厚是一種多種因素參與調(diào)節(jié)的復(fù)雜的動(dòng)態(tài)過程。研究發(fā)現(xiàn)長(zhǎng)期的 生物力學(xué)壓力和/或容積負(fù)荷過度,使屯、室壁應(yīng)力增加,導(dǎo)致屯、肌肥厚。此外,血管緊張素 II(AngII)、內(nèi)皮素(ET)、兒茶酪胺、轉(zhuǎn)化生長(zhǎng)因子-P(TGF-P)等各種胞外刺激信號(hào)可 誘導(dǎo)核內(nèi)基因表達(dá)的改變,從而導(dǎo)致屯、肌細(xì)胞肥大[7-11]。從分子水平上看屯、肌肥厚的病 變過程分=個(gè)環(huán)節(jié):胞外肥厚刺激信號(hào)的出現(xiàn)、胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)及核內(nèi)基因轉(zhuǎn)錄活化,最終誘 發(fā)細(xì)胞發(fā)生肥大表型變化。目前研究已經(jīng)顯示多種信號(hào)通路參與屯、肌肥厚的過程。其中, 巧調(diào)神經(jīng)憐酸酶calcineurin/NFAT、絲裂原活化蛋白激酶(MAPK)與PI3K/Akt/GSK3P信號(hào) 轉(zhuǎn)導(dǎo)通路W及由運(yùn)S條通路所調(diào)節(jié)的下游轉(zhuǎn)錄因子MCIP1. 4、NF-KB、AP-1、MEF2、mTOR等 在屯、肌肥厚的發(fā)生發(fā)展中起著重要作用[1,2, 12-17]。
[0005]核定位蛋白 1(Nuclearlocalizedprotein-l,Nulpl),是 2002 年發(fā)現(xiàn)的HLH家 族蛋白,由676個(gè)氨基酸組成,包含一個(gè)HLH結(jié)構(gòu)域及一個(gè)DUF654結(jié)構(gòu)域[1引。DUF654結(jié) 構(gòu)域由約400個(gè)氨基酸序列組成,其中包含大量疏水性氨基酸,其序列從酵母到人類均高 度保守,但其具體功能仍不明確。Nulpl蛋白在成人各主要臟器中均有表達(dá),其中W屯、臟中 表達(dá)最高[19]。細(xì)胞內(nèi)定位主要在細(xì)胞核內(nèi),細(xì)胞漿中也有少量表達(dá)。目前關(guān)于Nulpl的 相關(guān)研究仍較少,2006年化iZY等通過巧光素酶報(bào)告基因發(fā)現(xiàn)Nulpl可作用轉(zhuǎn)錄抑制因 子抑制血清反應(yīng)因子(SRF)的轉(zhuǎn)錄活性,DUF654結(jié)構(gòu)域,而不是HLH結(jié)構(gòu)域在其中起重要 作用巧0]。2007年化kanS等通過在骨肉瘤細(xì)胞中過表達(dá)Nulpl發(fā)現(xiàn)其可W促進(jìn)骨肉瘤 細(xì)胞的調(diào)亡。SRF是一種在體內(nèi)廣泛表達(dá)的轉(zhuǎn)錄因子,SRF可W通過特異性識(shí)別DNA序列中 的CArGbox(CC(A/T)eGG),調(diào)控多種基因的轉(zhuǎn)錄,并參與細(xì)胞生長(zhǎng)、分化,神經(jīng)傳導(dǎo)等許多 病理生理過程。
[000引 參考文獻(xiàn): 1. Li H, He C, Feng J, Zhang Y, Tang Q, Bian Z, Bai X,Zhou H, Jiang H, Heximer SP, Qin M, Huang H, Liu PP, Huang C.民egulator of g protein signaling 5 protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload. Proc Natl Acad Sci USA. 2010;107:13818-13823. 2. Lu J, Bian ZY, Zhang民,Zhang Y, Liu C, Yan L, Zhang SM, Jiang DS, Wei X,Zhu XH, Chen M, Wang AB, Chen Y, Yang Q, Liu PP, Li H. Interferon regulatory factor 3 is a negative regulator of pathological cardiac hypertrophy. Basic民es Cardiol. 2013;108:326. 3. Li H, Tang QZ, Liu C, Moon M, Chen M, Yan L, Bian ZY, Zhang Y, Wang AB, Nghiem MP,Liu PP. Cellular flice-inhibitory protein protects against cardiac remodeling induced by angiotensin ii in mice. Hypertension. 2010;56:1109-1117. 4. Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol. 2011;8:30-41. 5. Diwan A, Dorn GW, 2nd. Decompensation ofcardiac hypertrophy: Cellular mechanisms and novel therapeutic targets. Physiology (Bethesda). 2007;22:56-64. 6. Zile MR, Gottdiener JS, Hetzel SJ, McMurray JJ, Komajda M, McKelvie R, Baicu CF, lassie BM, Carson PE. Prevalence and significance of alterations in c過rdi過c structure過nd function in p過tients with he過rt failure過nd過preserved ejection fraction. Circulation. 2011;124:2491-2501. 7. Ai D, Pang W, Li N, Xu M, Jones PD, Yang J, Zhang Y, Chiamvimonvat N, Shyy JY, Hammock BD, Zhu Y. Soluble epoxide hydrolase plays an essential role in angiotensin ii-induced cardiac hypertrophy. Proc Natl Acad Sci USA. 2009;106:564-569. 8. Kurdi M, Booz GW. New take on the role of angiotensin ii in cardiac hypertrophy and fibrosis. Hypertension. 2011;57:1034-1038. 9. Komati H, Maharsy W, Beauregard J, Hayek S, Nemer M. Zfp260 is an inducer of cardiac hypertrophy and a nuclear mediator of endothelin-1 signaling. J Biol Chem. 2011;286:1508-1516. 10.民amunddal T, Lindbom M, Tang MS, Shao Y, Boren J, Omerovic E. Overexpression of apolipoprotein b attenuates pathologic cardiac remodeling and hypertrophy in response to catecholamines and after myocardial infarction in mice. Scand J Clin Lab Invest. 2012;72:230-236. 11. Koitabashi N, Danner T, Zaiman AL, Pinto YM, Rowell J, Mankowski J, Zhang D, Nakamura T, Takimoto E, Kass DA. Pivotal role of cardiomyocyte tgf-beta signaling in the murine pathological response to sustained pressure overload. J Clin Invest. 2011;121:2301-2312. 12. Li HL,Wang AB,Huang Y,Liu DP, Wei C,Williams GM,Zhang CN,Liu G, Liu YQ, Hao DL, Hui民T, Lin M, Liang CC. Isorhapontigenin, a new resveratrol過n過log,過ttenu過tes c過rdi過c hypertrophy vis blocking sign過ling transduction pathways. Rree Radio Biol Med. 2005;38:243-257. 13. Yan L, Wei X,Tang QZ, Feng J, Zhang Y, Liu C, Bian ZY, Zhang LF, Chen M, Bai X,Wang AB, Fassett J, Chen Y, He YW, Yang Q, Liu PP, Li H. Cardiac-specific mindin overexpression attenuates cardiac hypertrophy via blocking akt/gsk3beta and tgf-betal-smad signalling. Cardiovasc Res. 2011;92:85-94. 14. Cai J,Yi FF,Bian ZY,Shen DF,Yang L Yan L Tang QZ,Yang XC,Li比 Crocetin protects against cardiac hypertrophy by blocking mek-erkl/2 signalling pathway. J Cell Mol Med. 2009;13:909-925. 15. Cai J,Yi FF,Yang L,Shen DF,Yang Q,Li A,Ghosh AK,Bian ZY,Yan L, Tang QZ, Li H, Yang XC. Targeted expression of receptor-associated late transducer inhibits maladaptive hypertrophy via blocking epidermal growth factor receptor signaling. Hypertension. 2009;53:539-548. 16. Bian ZY, Huang H, Jiang H, Shen DF, Yan L, Zhu LH, Wang L, Cao F, Liu C,Tang QZ,Li H. Lim and cysteine-rich domains 1 regulates cardiac hyp