應(yīng)用于光通信領(lǐng)域的混合式光纖電流互感器供電電路的制作方法
【技術(shù)領(lǐng)域】
[0001]本發(fā)明涉及光通信技術(shù)領(lǐng)域,具體的說,是應(yīng)用于光通信領(lǐng)域的混合式光纖電流互感器供電電路。
【背景技術(shù)】
[0002]光通信(Optical Communicat1n)是以光波為載波的通信方式。增加光路帶寬的方法有兩種:一是提高光纖的單信道傳輸速率;二是增加單光纖中傳輸?shù)牟ㄩL數(shù),即波分復(fù)用技術(shù)(WDM)。
[0003]城域網(wǎng)(Metropolitan Area Network)是在一個城市范圍內(nèi)所建立的計算機通信網(wǎng),簡稱MAN。屬寬帶局域網(wǎng)。由于采用具有有源交換元件的局域網(wǎng)技術(shù),網(wǎng)中傳輸時延較小,它的傳輸媒介主要采用光纜,傳輸速率在100兆比特/秒以上。
[0004]MAN的一個重要用途是用作骨干網(wǎng),通過它將位于同一城市內(nèi)不同地點的主機、數(shù)據(jù)庫,以及LAN等互相聯(lián)接起來,這與WAN的作用有相似之處,但兩者在實現(xiàn)方法與性能上有很大差別。
[0005]基于一種大型的LAN,通常使用與LAN相似的技術(shù)。MAN單獨的列出的一個主要原因是已經(jīng)有了一個標(biāo)準(zhǔn):分布式隊列雙總線DQDEKDistributed Queue Dual Bus),即IEEE802.6 AQDB是由雙總線構(gòu)成,所有的計算機都連結(jié)在上面。
[0006]寬帶城域網(wǎng)(BMAN)是我國信息化建設(shè)的熱點,DWDM(密集波分復(fù)用)的巨大帶寬和傳輸數(shù)據(jù)的透明性,無疑是當(dāng)今光纖應(yīng)用領(lǐng)域的首選技術(shù)。然而,MAN等具有傳輸距離短、拓?fù)潇`活和接入類型多等特點,如照搬主要用于長途傳輸?shù)腄WDM,必然成本過高;同時早期DWDM對MAN等靈活多樣性也難以適應(yīng)。面對這種低成本城域范圍的寬帶需求,CWDM(粗波分復(fù)用)技術(shù)應(yīng)運而生,并很快成為一種實用性的設(shè)備。
[0007]對光通信來說,其技術(shù)基本成熟,而業(yè)務(wù)需求相對不足。以被譽為“寬帶接入最終目標(biāo)”的FTTH為例,其實現(xiàn)技術(shù)EPON已經(jīng)完全成熟,但由于普通用戶上網(wǎng)需要的帶寬不高,使FTTH的商用只限于一些試點地區(qū)。但是,在2006年,隨著IPTV等三重播放業(yè)務(wù)開展,運營商提供的帶寬已經(jīng)不能滿足用戶對高清晰電視的要求,隨之FTTH的部署也提上了日程。無獨有偶,ASON對傳輸網(wǎng)絡(luò)控制靈活,可為企業(yè)客戶提供個性化服務(wù),不少運營商為發(fā)展和維系企業(yè)客戶,不惜重金投資建設(shè)AS0N。
[0008]未來傳輸網(wǎng)絡(luò)的最終目標(biāo),是構(gòu)建全光網(wǎng)絡(luò),即在接入網(wǎng)、城域網(wǎng)、骨干網(wǎng)完全實現(xiàn)“光纖傳輸代替銅線傳輸”。骨干網(wǎng)和城域網(wǎng)已經(jīng)基本實現(xiàn)了全光化,部分網(wǎng)絡(luò)發(fā)展較快的區(qū)域,也實現(xiàn)了部分的接入層的光進(jìn)銅退。
[0009]激光器,1960年7月8日,美國科學(xué)家梅曼發(fā)明了世界上首臺激光器一一紅寶石激光器,從此人們便可獲得性質(zhì)和電磁波相似而頻率穩(wěn)定的光源。研究現(xiàn)代化光通信的時代也從此開始。激光器的英文簡稱叫LASER,意思是“受激發(fā)射的光放大”。這種激光器產(chǎn)生的光與普通的燈光不一樣,它是受物質(zhì)原子結(jié)構(gòu)本質(zhì)決定的光,頻率穩(wěn)定,約為100太赫。這種光的頻率比已經(jīng)廣泛應(yīng)用的微波(頻率約為10兆赫)的頻率高I萬倍。因此,用這種光來傳送信息從理論上來說,通信的容量可以比微波通信的容量也大I萬倍!因此,激光器的發(fā)明對光通信的研究工作產(chǎn)生了重大的影響。但是最初發(fā)明的激光器在室溫下不能連續(xù)工作,因此,還不可能在通信中獲得實際應(yīng)用。
[0010]光纖,人類從未放棄過對理想光傳輸介質(zhì)的尋找,經(jīng)過不懈的努力,人們發(fā)現(xiàn)了透明度很高的石英玻璃絲可以傳光。這種玻璃絲叫做光學(xué)纖維,簡稱“光纖”。人們用它制造了在醫(yī)療上用的內(nèi)窺鏡,例如做成胃鏡,可以觀察到距離一米左右的體內(nèi)情況。但是它的衰減損耗很大,只能傳送很短的距離。光的損耗程度是用每千米的分貝為單位來衡量的。直到20世紀(jì)60年代,最好的玻璃纖維的衰減損耗仍在每公里1000分貝以上。每公里1000分貝的損耗是什么概念呢?每公里10分貝損耗就是輸入的信號傳送I公里后只剩下了十分之一,20分貝就表示只剩下百分之一,30分貝是指只剩千分之一……1000分貝的含意就是只剩下億百分之一,是無論如何也不可能用于通信的。因此,當(dāng)時有很多科學(xué)家和發(fā)明家認(rèn)為用玻璃纖維通信希望渺茫,失去了信心,放棄了光纖通信的研究。
[0011]激光器和光纖的發(fā)明,使人們看到了光通信的曙光。而要實現(xiàn)光纖通信,還需要在激光器和光纖的性能上有重大的突破。但是在這兩方面的突破遇到了許多困難,尤其是光纖的損耗要達(dá)到可用于通信的要求,從每千米損耗1000分貝降低到20分貝似乎不太可能,以致很多科學(xué)家對實現(xiàn)光纖通信失去了信心。就在這種情況下,出生于上海的英藉華人高錕(K.C.Kao)博士,通過在英國標(biāo)準(zhǔn)電信實驗室所作的大量研究的基礎(chǔ)上,對光波通信作出了一個大膽的設(shè)想。他認(rèn)為,既然電可以沿著金屬導(dǎo)線傳輸,光也應(yīng)該可以沿著導(dǎo)光的玻璃纖維傳輸。1966年7月,高錕就光纖傳輸?shù)那熬鞍l(fā)表了具有重大歷史意義的論文,論文分析了玻璃纖維損耗大的主要原因,大膽地預(yù)言,只要能設(shè)法降低玻璃纖維的雜質(zhì),就有可能使光纖的損耗從每公里1000分貝降低到20分貝/公里,從而有可能用于通信。這篇論文使許多國家的科學(xué)家受到鼓舞,加強了為實現(xiàn)低損耗光纖而努力的信心。
[0012]世界上第一根低損耗的石英光纖一一1970年,美國康寧玻璃公司的三名科研人員馬瑞爾、卡普隆、凱克成功地制成了傳輸損耗每千米只有20分貝的光纖。這是什么概念呢?用它和玻璃的透明程度比較,光透過玻璃功率損耗一半(相當(dāng)于3分貝)的長度分別是:普通玻璃為幾厘米、高級光學(xué)玻璃最多也只有幾米,而通過每千米損耗為20分貝的光纖的長度可達(dá)150米。這就是說,光纖的透明程度已經(jīng)比玻璃高出了幾百倍!在當(dāng)時,制成損耗如此之低的光纖可以說是驚人之舉,這標(biāo)志著光纖用于通信有了現(xiàn)實的可能性。
[0013]光纖之路舍我其誰
1970年激光器和低損耗光纖這兩項關(guān)鍵技術(shù)的重大突破,使光纖通信開始從理想變成可能,這立即引起了各國電信科技人員的重視,他們競相進(jìn)行研究和實驗。1974年美國貝爾研究所發(fā)明了低損耗光纖制作法一一CVD法(汽相沉積法),使光纖損耗降低到I分貝/公里;1977年,貝爾研究所和日本電報電話公司幾乎同時研制成功壽命達(dá)100萬小時(實用中10年左右)的半導(dǎo)體激光器,從而有了真正實用的激光器。1977年,世界上第一條光纖通信系統(tǒng)在美國芝加哥市投入商用,速率為45Mb/s。
[0014]進(jìn)入實用階段以后,光纖通信的應(yīng)用發(fā)展極為迅速,應(yīng)用的光纖通信系統(tǒng)已經(jīng)多次更新?lián)Q代。70年代的光纖通信系統(tǒng)主要是用多模光纖,應(yīng)用光纖的短波長(850納米)波段,(I納米=1000兆分之一米)。80年代以后逐漸改用長波長(1310納米),光纖逐漸采用單模光纖,到90年代初,通信容量擴大了50倍,達(dá)到2.5Gb/s。進(jìn)入90年代以后,傳輸波長又從1310納米轉(zhuǎn)向更長的1550納米波長,并且開始使用光纖放大器、波分復(fù)用(WDM)技術(shù)等新技術(shù)。通信容量和中繼距離繼續(xù)成倍增長。廣泛地應(yīng)用于市內(nèi)電話中繼和長途通信干線,成為通信線路的骨干。
[0015]摩爾定律,早在1964年,英特爾公司創(chuàng)始人戈登?摩爾(Gordon Moore)在一篇很短的論文里斷言:每18個月,集成電路的性能將提高一倍,而其價格將降低一半。這就是著名的摩爾定律。由此,微處理器的速度會每18個月翻一番。這就意味著每5年它的速度會快10倍,每10年會快100倍。同等價位的微處理器會越變越快,同等速度的微處理器會越變越便宜。可以想見,在未來,世界各地的人不但都可以通過自己的計算機上網(wǎng),而且還可以通過他們的電視、電話、電子書和電子錢包上網(wǎng)。作為迄今為止半導(dǎo)體發(fā)展史上意義最深遠(yuǎn)的定律,摩爾定律被集成電路近40年的發(fā)展歷史準(zhǔn)確無誤地驗證著。<